The B2 receptor of bradykinin is not essential for the post-exercise increase in glucose uptake by insulin-stimulated mouse skeletal muscle.
نویسندگان
چکیده
Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin's relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isolated soleus muscles were incubated with [³H]-2-deoxyglucose +/-insulin (60 or 100 microU/ml). GU tended to be greater for WT vs. B2RKO soleus with 60 microU/ml insulin (P=0.166) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). Both genotypes had significant exercise-induced reductions (P<0.05) in glycemia and insulinemia, and the decrements for glucose (approximately 14 %) and insulin (approximately 55 %) were similar between genotypes. GU tended to be greater for exercised vs. sedentary soleus with 60 microU/ml insulin (P=0.063) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). There were no significant interactions between genotype and exercise for blood glucose, plasma insulin or GU. These results indicate that the B2R is not essential for the exercise-induced decrements in blood glucose or plasma insulin or for the post-exercise increase in GU by insulin-stimulated mouse soleus muscle.
منابع مشابه
ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO.
Improvement of insulin resistance by ACE inhibitors has been suggested; however, this mechanism has not been proved. We postulated that activation of the bradykinin-nitric oxide (NO) system by an ACE inhibitor enhances glucose uptake in peripheral tissues by means of an increase in translocation of glucose transporter 4 (GLUT4), resulting in improvement of insulin resistance. Administration of ...
متن کاملConjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise
Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...
متن کاملBradykinin augments insulin-stimulated glucose transport in rat adipocytes via endothelial nitric oxide synthase-mediated inhibition of Jun NH2-terminal kinase.
An increase in bradykinin has been suggested to contribute to the enhanced insulin sensitivity observed in the presence of ACE inhibitors. To investigate a potential direct, nonvascular effect on an insulin target tissue, the effect of bradykinin on glucose uptake and insulin signaling was studied in primary rat adipocytes. Whereas basal glucose uptake was not altered, bradykinin augmented insu...
متن کاملACE inhibition and glucose transport in insulinresistant muscle: roles of bradykinin and nitric oxide.
Acute administration of the angiotensin-converting enzyme (ACE) inhibitor captopril enhances insulin-stimulated glucose transport activity in skeletal muscle of the insulin-resistant obese Zucker rat. The present study was designed to assess whether this effect is mediated by an increase in the nonapeptide bradykinin (BK), by a decrease in action of ANG II, or both. Obese Zucker rats (8-9 wk ol...
متن کاملComment on Sato et al. Improving Type 2 Diabetes Through a Distinct Adrenergic Signaling Pathway Involving mTORC2 That Mediates Glucose Uptake in Skeletal Muscle. Diabetes 2014;63:4115–4129
Sato et al. (1) showed that b2-adrenoreceptor–mediated phosphorylation of mammalian target of rapamycin complex 2 (mTORC2) in skeletal muscles increased GLUT4 translocation to the plasma membrane and thus increased cellular glucose uptake. In diabetes and obesity, an upregulated G-protein–coupled receptor kinase, which inhibits G-protein–coupled receptors, has been reported to contribute to ins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological research
دوره 60 3 شماره
صفحات -
تاریخ انتشار 2011